
A Reference Model For Scientific
Information Interchange

Lou Reich
Computer Sciences Corporation

Code 502
4600 Powder Mill Rd.

Beltsville, Maryland 20705
(301)794-1858, Fax (301) 794-4377

louis.i.reich@gsfc.nasa.gov

Don Sawyer
Goddard Space Flight Center

Code 633
Greenbelt, Maryland 20771

(301) 286-2748, Fax (301) 286-1771
donald.sawyer@gsfc.nasa.gov

Randy Davis
Laboratory for Atmospheric and Space Physics

University of Colorado
Campus Box 590

Boulder, Colorado 80309
(303) 492-6867, Fax (303) 492-6444,

davis@aquila.colorado.edu

June 1994
Table of Contents

I. Introduction
II. Issues in Scientific Information Interchange
III. Overview of an Information Interchange Reference Model
IV. Model Schema for Scientific Information Interchange
V. Applying the Reference Model
VI. Relationships With Other Reference Models
VII. Summary and Future Plans

List of Figures

Figure 1: Information Interchange Process
Figure 2: Information Interchange Core Model
Figure 3: Sample Type Description of an Image
Figure 4: IIRM Object Layer Class Hierarchy (Preliminary)
Figure 5: Comparison of HDF, PDS and SFDU Methodologies Using the IIRM
Figure 6: Two HDF Data Objects
Figure 7: Description of PDS Image Object Type
Figure 8: SFDU Label Value Object and its Description

I . Introduction

This paper presents an overview of an Information Interchange Reference Model (IIRM) currently
being developed by individuals participating in the Consultative Committee for Space Data Systems
(CCSDS) Panel 2, the Planetary Data Systems (PDS), and the Committee on Earth Observing
Satellites (CEOS). This is an ongoing research activity and is not an official position by these
bodies.

This reference model provides a framework for describing and assessing current and proposed
methodologies for information interchange within and among the space agencies. It is hoped that
this model will improve interoperability between the various methodologies. As such, this model
attempts to address key information interchange issues as seen by the producers and users of
space-related data and to put them into a coherent framework.

Information is understood as the knowledge (e.g., the scientific content) represented by data.
Therefore, concern is not primarily on mechanisms for transferring data from user to user [e.g.,
compact disk read-only memory (CD-ROM), wide-area networks, optical tape, and so forth] but
on how information is encoded as data and how the information content is maintained with minimal
loss or distortion during transmittal. The model assumes open systems, which means that the
protocols or methods used should be fully described and the descriptions publicly available. Ideally
these protocols are promoted by recognized standards organizations using processes that permit
involvement by those most likely to be affected, thereby enhancing the protocol’s stability and the
likelihood of wide support.

II. Issues In Scientific Information Interchange

Figure 1 presents an overview of what is meant by information interchange. The left side indicates
the existence of several pieces of information in various local forms and knowledge of the
relationships among them. The objective for the data producer is to assemble these pieces and the
appropriate knowledge in a way that can be transferred across a spatial and temporal gap to a
consumer system where any or all of the pieces of information and the relationships between them
can be identified, extracted, and used in processing and display. An essential element in this view
is the physical (spatial) separation of the two systems. Temporal separations can range from a
fraction of a second to many decades.

The problem of moving strings of bytes reliably from senders to receivers has been successfully
addressed by several suites of standards. The Open Systems Interconnection (OSI) model and the
standards that adhere to it provide a solid framework for understanding and implementing systems
that move data across networks. The packet telemetry and telecommand standards developed by the
CCSDS supplement OSI-compliant protocols with capabilities specifically designed for
communications with satellites. The Sony-Philips Red and Green Books provide the basis for
encoding information on CD-ROM media so that the resulting disks can be read in any CD-ROM
reader. These protocols can assure that a transmitted byte string is received completely and in the
correct order (or if it is not, that the failure is reported to the receiver).

The protocols cited above do not, however, address all the needed aspects of encoding and
interpreting the information within byte strings. They transport blocks, packets, and frames,
whereas end users in the space sciences deal with images, spectra, tables, and maps. How then do
we address the transport of the information objects, such as images and tables, to scientists? The
OSI model allows for applications-level protocols that provide the rules for encoding and
interpreting information within an applications domain. It is the applications-level protocols
(sometimes with assistance from presentation layer protocols) that allow recipients to extract
information from the bytes of data they receive. Few formally standardized data transfer methods
for scientific information exist, but the need for them is growing. Most science disciplines within

NASA are developing or seeking standard ways to transfer complex scientific information. The
IIRM provides a mechanism for characterizing data transfer methods (with emphasis on those for

Figure 1. Information Interchange Process

Application
Data

Supporting
Data

Notes and
Local

Conventions

Data Producer's Data
and Understanding

Data

Data Description

Local View to
Interchange

View

Interchange
View

Interchange
View

Interchange
View to Local

View

Application
and

Supporting
Data

Data
Descriptions

Consumer's
Preferred Form

Information Object

Tape Disk Network

Extracting
From Media

Mapping
to Media

Relationships

Time and
Space

Separation

Mapping Mapping

scientific applications) so that users can describe the similarities and differences between existing
or proposed methods. This may provide a basis for discussing the way individual science
disciplines view their data and perhaps result in greater uniformity between data transfer methods
for scientists. The more standardized the methods are the more automated the services can be for
dealing with the information in both producer and consumer environments.

Several characteristics of space science applications complicate the information interchange
process, including:

• Highly heterogeneous computing environments
• Voluminous data and metadata
• Wide variations in the level of user sophistication
• A large--and expanding--set of information relationships

The remainder of this paper discusses some of the key issues of information transfer in space
science applications. This list is a first pass and is probably not comprehensive. Interested readers
are encouraged to submit any additional issues or comments on current issues.

A. Encoding Information Into a Data Stream

Whenever information is stored or processed, it is encoded as a series of primitive data elements.
Use of heterogeneous computer hardware and bit-efficient coding schemes for data from satellites
and science instruments results in a wide variety of bit sequences to represent primitive data types
(e.g., integer and floating point numbers). For efficiency, the data processed by a computer should
be encoded in the formats that the computer hardware supports; however, these formats often
differ for the computer systems used by the producer and consumer of a data stream. There are
several ways to address this problem:

• The producer’s system may know the local representation of the consumer’s system and
convert data to the consumer's local representation before sending

• The producer’s system can inform the receiving system about the data representation and
require the consumer to convert the data it receives to its local representation

• The producer’s system can convert data into an agreed-on format, and the consumer’s
system can convert from the agreed format to its local representation

No single solution is best for all situations. Despite today's sophisticated and fast computer
hardware, converting large volumes of information from one format to another for interchange or
archiving is often impractical; data volumes appear to increase as rapidly as processing power. This
means that a scientist's access to information may be limited simply by the difficulties of data
translation.

Encoding issues also arise in every layer of software through which information must pass when
transferring data streams. For example, some operating systems impose private record encoding
schemes within files that can restrict or complicate the flow of data files within an open system.

Programming languages present an additional problem: a programming language's set of base
types is usually richer than the primitive data types represented in hardware (for example, arrays
and enumerated types). However, different programming languages use different conventions to
encode the same base type, and encoding information as a sequence of base data types that can be
recognized and manipulated by all the languages that might be used to process the information is
often difficult. For example, exchanging arrays across different languages is often difficult because
arrays for some languages are implicitly column major, and for others they are row major. These
kinds of problems have led to specialized data definition languages (DDLs) that allow data to be
fully described in a way that is independent of any particular programming language. Even with
DDLs, some modification of the information may be required before the information is used with a
specific programming language (the array majority issue is such a problem).

B. Identifying and Accessing the Information in a Data Stream

The receiver of a data stream must be able to locate, identify, and access each major information
unit in the data. These units are called information objects; however, use of this term does not
imply that the systems producing and consuming them necessarily conform to the principles of
object-oriented programming.

For open systems, a very large number of different types of information objects may be
transmitted. The producer knows the identity and order of objects within any data stream it
transmits, but it is presumed that the consumer has no prior knowledge of the data contents. A
mechanism is therefore required to identify and describe each information object in the data. The

usual mechanism is to provide supporting information, or metadata, that identifies and describes
the information objects. Some of the metadata acts like a table of contents or index in helping to
locate and identify the information objects. Software is then provided to browse through a large set
of information objects to find the specific objects required for an application or to create a useful
subset of objects. Metadata are also used to describe the attributes of information objects and to
describe the relationships between information objects.

Numerous issues are associated with metadata. First, the mechanism for encoding and supplying
the metadata must be determined. Second, the amount and completeness of metadata needed to
describe information objects and their relationships is inversely proportional to the inherent level of
the consumers understanding of the information objects received. Producers must determine the
metadata needed to make the transmitted data understandable and accessible to the intended
audience. The requirements are particularly stringent for archived data, where a data stream may be
preserved beyond the life of any hardware or software that created it or that can access it. In such
cases, sufficient descriptive information must be available to allow deciphering of the entire data
stream.

Metadata are data, and like other kinds of data, generally require their own metadata to allow
receivers to understand and interpret them. This meta-metadata must also be provided. A current
mechanism for storing and providing some of this meta-metadata is a database called a Data
Dictionary or Data Entity Dictionary (DED). The DED defines information in a consistent format.

C. Interpreting Information in a Data Stream

Received information must often be placed into a context broader than the containing data stream.
A common problem is unambiguously identifying and naming an object so that it can be
distinguished from all other information objects that exist in a large system. A traditional method of
naming the information objects held in computer systems is by location, for example, directory
path names for files. This method causes problems, however, when the location of an information
object changes, then references to the object (e.g., a file reference appearing within a text
document) must also change.

Another issue is how received information objects relate to other information objects within a large
system. Software reusability depends in large measure on this issue, for if a piece of software has
applicability to a wide variety of data objects, a mechanism is needed for determining which objects
the software can and cannot handle. The inheritance mechanism used in object-oriented
programming addresses this problem by providing a hierarchy or network to determine how each
type of object is related to all other types. Typically in an object-oriented system, software that
works for one type of object will work for all objects of that type and for all types of objects
derived from the original type.

III. Overview Of An Information Interchange Reference Model

The IIRM consists of three layers, as shown in Figure 2. The layers support information
partitioning and a degree of information hiding, which grows as one moves from the lowest layer
to the top layer. This structure allows the functionality assigned to each layer to be addressed
separately and allows users to assume that the functionality of the lower layers is provided in
support of a given upper layer. An implementation need not adhere to strict information hiding to
be consistent with this model; access to information at a lower layer may be needed to meet special
circumstances. For a given implementation, the three layers work together. Note that not every
implementation will interoperate with other implementations at the adjacent (lower or upper) layers.

The top layer of the IIRM is based on the object-oriented paradigm. This schema includes the
definition of base types, a type hierarchy, and relationships that model the process of information

interchange. Use of an object-oriented data model, by identifying the specific objects defined and
supported (either implicitly or explicitly) by various information interchange methodologies, makes
it possible to identify similar objects across implementations and to compare the capabilities and
mechanisms of each implementation. This technique allows analysis of non-object-oriented
methodologies through the identification of the implicit objects that a methodology supports. In
addition, an object-oriented view allows for explicit definition of complex relationships among
scientific data and metadata. Current object-oriented data models do not discuss underlying
representation of data. Because such representation is an important aspect of science data
exchange, the IIRM augments the object-oriented data model with the additional (lower) layers that
deal with data representation issues.

The functionality addressed in each of the layers is described in the sections that follow.

A. Stream Layer

As noted previously, the IIRM augments existing models of the data transfer process, like the OSI
model. Because the IIRM addresses issues found in the user-oriented top layers (the applications
and presentation layers) of the OSI model, the IIRM can assume the existence of protocols for the
lower five layers of the OSI stack (the physical through session layers) and need not duplicate the
functionality of those lower layers. However, the IIRM applies not just for information interchange
over networks; it is for information transported on media like tape and CD-ROM as well. The
stream layer—the lowest layer of the IIRM—provides the interface between the IIRM and medium-
dependent standards, protocols and mechanisms for data transport. It hides the unique
characteristics of the transport medium by stripping any artifacts of the storage or transmission
process (such as packet formats, block sizes, inter-record gaps, and error-correction codes) and it
provides the higher levels of the IIRM with a consistent view of data that is independent of its
medium. This common view is that data are simply collections of named sequences of bits. The
term name here means any unique key for locating the data bytes of interest, including path names
for files, a virtual channel ID for CCSDS telemetry, and so on.

Examples of standards and protocols that provide the functionality needed in the stream layer are
ISO 9660 for CD-ROM, ISO standard labels on magnetic tapes, and file transfer protocol (FTP) on
networks. For example, the ISO-9660 standard provides the volume and directory information
needed to locate a file on a CD–ROM volume and sufficient information about the file format that a
user retrieve the file as a sequence of bits. It ignores issues such as record structure (fixed length or
variable length). The returned file is simply a sequence of bytes at this point; access to the
information encoded within this file (or any other data stream) is addressed in the structure layer,
described in the next section.

B. Structure Layer

As mentioned previously, information must be coded into primitive data types that can be
recognized and accessed by computer hardware and operating systems. In the structure layer,
information is viewed as a sequence of primitive data types. For any implementation, the structure
layer defines the primitive types that are recognized. This usually means at least characters and
integer and real numbers. Primitive types can also include the aggregation types typically supported
in computer languages, including the array (where each element consists of the same type of data)
and a record or structure that can (potentially) hold more than one type of data. An enumeration
type is also often provided as a primitive type. As noted earlier, because of the efficiency
constraints often imposed on space science data, users sometimes create their own representations
for primitive data types (e.g., 6-bit integer numbers). Issues relating to the representation of
primitive data types are resolved in this layer.

All types of information are built from these primitive types. Through the structure layer, the
information is mapped into primitive types and then into the corresponding bits and bytes of a data
stream. Note that a single structure may be distributed among several streams. The issues of the
structure layer are often thought of as data format issues and are handled automatically by DDLs.

 C. Object Layer

The highest layer in the IIRM is the object layer, wherein information is represented as objects that
are recognizable and meaningful to end users. For scientists, this includes objects such as images,
spectra, and histograms. The object layer adds semantic meaning to the data treated by the lower
layers of the model. Some specific functions of this layer include the following:

Figure 2. Information Interchange Core Model

Service Access Point

Object Layer
 • Data Objects
 • Container Objects
 • Data Description Objects

Service Access Point

Structure Layer
 • Primitive Data Types
 • List/Array Types
 • Records
 • Names Aggregates

Stream Layer
 • Delimited Byte Streams

Media (Disks, Tapes, and Network)

Objective Interface
Messages Named Aggregate Named Bit Stream

•••

Named Aggregate

•••

Service Access Point

Named Bit Stream Named Bit Stream

•••

• Recognizing data types based on information content rather than on the representation of
those data at the structure layer. For example, many different kinds of objects—images,

maps, and tables—can be implemented at the structure level using arrays. Within the object
layer, images, maps, and tables are recognized and treated as distinct types of information.

• Presenting applications with a consistent interface to similar kinds of information objects,
regardless of their underlying representations.

• Providing a schema mechanism to identify the characteristics of objects that are visible to
users along with the relationships between objects.

To characterize information in the object layer, the IIRM uses concepts and terminology that have
been developed in the object-oriented community. Agreement is not unanimous about what
constitutes an object-oriented approach, but most models of object-oriented systems currently in
use or in development share the key features needed. One such model, the concrete object model
developed by the Object Data Management Group (ODMG), is being used to facilitate the
standardization of Object Database Management Systems (ODBMSs). This paper uses the
ODMG's approach to describe the entities at the object layer of the IIRM. This model can be briefly
summarized as follows:

• The basic modeling primitive is the object. As with real-world objects, information objects
can be arbitrarily complex. For example, in the real world, both a bolt and an automobile
are objects, although the latter is significantly more elaborate than the former. Similarly, a
pixel of an image, an entire image, and the entire dataset containing the image can all be
treated as objects.

• Objects can be categorized into types.
• Instances of objects are created using object types as templates. Each object instance

possesses all the characteristics of its type. The set of all instances of a specific object type
is called that type's extent.

A type has one interface and one or more implementations. The interface defines the external public
behavior supported by all instances of a type. The components of the interface are as follows:

• Attributes—Characteristics of the object for which an external user can get the values for
any instance of the object

• Relationships—Logical paths an external user can traverse to move from an object instance
to related object instances

• Operations—Actions an external user can invoke on an instance of an object

An implementation defines the internal or private data structures and procedures that support the
externally visible states and behaviors. A single interface may have several alternative
implementations.

Object types are related to one another using the supertype/subtype (or parent/child) relationship.
This relationship links all object types according to their shared characteristics and is commonly
represented as an acyclic graph. For example, a type called Faculty Member may have subtypes
called Instructor and Associate Professor, and Faculty Member may in turn be a subtype of
Person. All of the attributes, relationships, and operations defined for a supertype are inherited by
the subtype. The subtype may add attributes, relationships, and operations to introduce behaviors
or states unique to the instances of the subtype. A subtype may also refine the attributes,
relationships, and operations it inherits to specialize them to the behavior and range of state values
appropriate for instances of the subtype.

IV. Model Schema For Scientific Information Interchange

The three-layer model just described is general and can describe many data interchange problems.
The goal of the IIRM, however, is to have a model specifically suited to describing scientific data
interchange. In this section the model adds a domain-specific object-layer schema that allows
characterization and comparison of systems for scientific data interchange.

To show what the description of an object looks like, Figure 3 presents a formal description of an
image as represented in the object layer of a hypothetical data system. The descriptions of each
component are given in plain English, although for a real data system the descriptions of attributes,
operations, and languages will typically be in a formal, computer-readable language.

A key point about scientific data in general can be found in the description of relationships in the
sample: Manipulation of a primary scientific data object such as an image frequently requires
substantial auxiliary data. For example, interpretation of image objects requires a knowledge of the
camera detector calibration as well as geometric information—orbit position, spacecraft inertial
attitude, and the mounting and pointing of the camera on the spacecraft. These kinds of information
may be of scientific interest in their own right (for example, the trajectory of a spacecraft reveals
something about the number, position, and masses of objects in the solar system), but if in a
scientific application they are primarily used to analyze of other information objects such as images
and spectra, these kinds of information are auxiliary data. Auxiliary data can be collected into a set
of objects. The attributes, operations, and relationships for each type of auxiliary data object are
highly dependent on the object's role in data analysis. With orbit/attitude/pointing information, for
example, there may be attributes that indicate the inertial frame of reference (e.g., ecliptic and
equinox of date) and there may be operations to return spacecraft position at a specific time.

Another key point arises from the requirement that the IIRM be applicable to an open system
environment. In such an environment, it should be possible to devise software that can receive and
manipulate new types of objects with little or no reprogramming To do so such software must have
access to the metadata that describes the interface to each new object. A database of interface
definitions for objects is sometimes called an Object Interface Repository (OIR) or an Object

Object Type Image

Description An image represents a mapping of the intensity of electromagnetic
radiation in two or three spatial dimensions. Digital images consist
of a set of picture elements, or pixels, with the value of each pixel
proportional to the intensity of light measured by the camera system
within the areal extent of the pixel.

Supertype Image is derived from type Array, which describes homogeneous
multi-dimension data structures. Type Array is in turn a subtype of
the most basic type called Object

Subtype Subtypes of this type can be created to characterize images taken by
specific camera systems.

Attributes The following are the attributes—the visible characteristics—of
images:
• Number of dimensions (2 or 3) in the image [positive integer

numbers]
• Number of pixels in each dimension [positive integer number]
• Number of bits per pixel [positive integer number]
• Content [character string]
• Time that picture was taken [date/time]
• Exposure time [time]
• Wavelength or frequency range [real numbers]
• etc.

Operations The following are the operations that can be performed on all
images. These augment the set of operations that are inherited from
the parent type Array.

Subsample Create a new image consisting of a contiguous set of the pixels from
an image.

Average Create a new image by averaging a specified number of contiguous
pixels from an image.

Generate Histogram Create a Histogram object for which each element is the total number
of pixels within an image with a given intensity value.

etc.

Relationships The following are relationships involving image objects:

Calibration This relationship relates an image to a characterization of the sensor
that took the image.

Pointing This relationship relates an image to where the camera is pointing.

etc.

Figure 3. Sample Type Description of an Image

Dictionary (OD); these are specific cases of a DED. Such a DED can identify the interface
components—attributes, operations and relationships—for the known types of objects. The DED
can also provide a formal definition of each of these components. A DED and the definitions within
it can be considered objects called metadata objects. Transferring metadata objects from one DED

to another or from a DED to an end user may require that the metadata objects be encapsulated for
transport other kinds of objects, so that metadata objects may exist outside of the framework of a
DED.

Given the complexities of scientific data, typical data requests may require the transfer of several
types of primary objects (for example, some images and their associated image-intensity
histograms), along with associated auxiliary objects, such as calibration files and
orbit/attitude/pointing data, and metadata objects that describe each of these other kinds of objects.
Thus mechanisms must be available for collecting other kinds of objects and encapsulating them
during transport; such mechanisms are called container objects. Container objects may contain their
own kinds of metadata: for example, they may provide a sort of table of contents that identifies and
locates each object within a container.

Figure 4 provides a preliminary class hierarchy. Each downward arrow indicates a subtype
relationship. For example, both Container Object and Data Object are subtypes of Object and they
inherit all the methods of Object.

When applying the IIRM in the analysis of a data system or a data interchange methodology, seek
to identify the types of objects that are used by the system. Examples of this analysis are given in
the next section. Some data systems can be best described by modeling from the top (i.e., object
layer) down, whereas others are better suited for modeling from the bottom (i.e., stream layer) up.
Either a top-down or bottom-up approach may be used when applying the IIRM model.

V. Applying The Reference Model

In this section, the IIRM is used to characterize current data exchange methodologies as follows:

1. Identify the primary object types defined by the methodology at the object layer, along with the
auxiliary, metadata, and container objects used.

2. Identify the primitive data types defined in the structure layer and the way the object-layer
entities map to the primitive types in the structure layer

3. Identify the media and data exchange mechanisms supported at the stream layer.

The following data interchange methodologies are described here:

• Hierarchical Data Format (HDF)
• Planetary Data System (PDS)
• Standard Formatted Data Unit (SFDU)

Figure 5 summarizes the key characteristics of these methodologies.

A. Hierarchical Data Format

The HDF was created by the National Center for Supercomputing Applications (NCSA) to provide
access to common types of scientific data. An HDF is a self-describing file format that contains a
set of tagged objects. NCSA provides a comprehensive library of routines in C and FORTRAN to
create and to retrieve data from HDF files. In addition, there is a sizable body of applications
software, both public domain and commercial, for accessing data in HDF format.

HDF has been selected as the baseline standard data format for the Earth Observing System Data
and Information System (EOSDIS). Consequently, the HDF data model is undergoing significant
evolution to provide high-level data types commonly used by scientists to model Earth-related
phenomena. The following analysis is based on Version 3.3 of HDF, released in September 1993.

Object

Container Objects Data Objects

Metadata Objects Auxiliary Data Objects

Figure 4. IIRM Object Layer Class Hierarchy (Preliminary)

PDS HDF SFDU

Stream Layer • Requires file structure
• Uses FTP/DECNET

or disk structure

• Requires direct access
file structure

• Allows any level of
service that supports
conversion of bits to
bytes

Structure Layer • ODL labeled objects
• Machine dependent

datatypes, IEEE
datatypes

• Tagged record
structure

• Machine dependent
datatypes, IEEE
datatypes

• Stream of Label-
Value Objects

• Data Definition
Language allows
wide specification of
primitive types and
"record structures"

Object Layer • Limited class
hierarchy

• No methods defined
other than attribute
retrieval

• Data Objects
– Images
– Histograms
– Spectra
– Tables

• Container Objects
– Files
– Volumes

• Metadata Objects
– Catalog
– Data Entity

Dictionary
• Auxiliary Data

Objects
– SPICE Kernals
– Gazeteer Objects

• No current class
hierarchy

• Formal Application
Program Interface
(API) for each data
type

• Data objects
– Raster Images
– Palette
– Multidimensional

Array (SDS)
– Tables (Vdata)

• Container Objects
– Vgroups
– Files

• Metadata Objects
– Annotation
– Attributes with

SDS

• No current class
hierarchy

• No methods defined
other than object
insertion/retrieval
from containers

• Data Objects
– Application Data

Objects
– Supplementary

Data Objects
• Container Objects

– Exchange Data
Units

– Application Data
Units

– Description Data
Units

• Metadata
– Data Description

Packages
– Data Entity

Dictionary Objects
– Catalog Attribute

Objects
• Auxiliary Data

Objects
– Supplementary

Data Objects

Figure 5. Preliminary Descriptions of HDF, PDS, and SFDU Using IIRM

Object Layer

HDF provides a set of Application Program Interfaces (APIs) through which all application data
access must occur. The primary data objects within HDF are classified by the relevant API. These
APIs are equivalent to defining the external interface (i.e. operations and relationships) of objects at
the IIRM object layer in that they are independent of the internal implementation of the objects
within HDF files. The APIs currently defined are:

• Raster Image API: Allows the user to store and access raster images and optional color
palettes. Three optional forms of image compression are supported: JPEG, run-length
encoding and IMCOMP compression.

• Palette API: Defines color tables for 8-bit raster image data.
• Scientific Data Set (SDS) API: Allows the storage and access of multidimensional arrays

with specific attribute data. The interface provides the ability to slice an array and work
with the resulting subset of the data.

• NetCDF API: Also allows storage and retrieval of multidimensional arrays. This API
supports the netCDF data model, developed by the Unidata program of the University
Corporation for Atmospheric Research, which is a richer data model than SDS. Additional
features include an "unlimited" dimension and global and local attributes.

• Vdata API: Allows storage and retrieval of collections of data that can be viewed as record
structures. This includes data meshes, polygonal data with connection information, packed
data records, and sparse matrices.

• Vgroup API: Allows general hierarchical grouping of HDF objects.
• Annotation API: Allows labels and unstructured text to be associated with any HDF object

or with an entire HDF file.

HDF does not support the concept of type hierarchies and formal inheritance. NCSA's
commitment to backward compatibility with previous versions of HDF has led to some features
that would probably be implemented differently if the system had been engineered to be object-
oriented from the outset. For example, the NetCDF API is a pure superset of the SDS API, since
these two APIs developed separately, the relationship between the SDS and NetCDF is not a true
subclass/superclass relationship.

Structure Layer

The structure layer in HDF supports a standard set of primitive data types including real numbers
(IEEE floating point), integer numbers (unsigned and signed 2's compliment), and character
strings (big-endian byte ordering). In addition, HDF can store the machine-specific representation
of reals, integers, and character strings for supported platforms.

The basic building block of an HDF file is the data object, which contains both data and
information about the data. A data object has two parts: a 12-byte data descriptor (DD) and a data
element. Figure 6 below illustrates two data objects.

A DD has four fields: a 16-bit tag, a 16-bit reference number, a 32-bit data offset, and a 32-bit data
length. The tag of a DD tells what kind of data is contained in the corresponding data element. A
tag and its associated reference number uniquely identify a data element within an HDF file.

Data Descriptors Data Elements

Rank and dimensions

Data

2; 90 by 100

63.2, 54.5, 12.3, . . .
16.2, 103.6, -7.4, . . .
 : : :
12.1, 6.9, 83.6 . . .

Figure 6. Two HDF Data Objects

DDs are stored in a linked list of blocks called data descriptor blocks, or DD blocks. The file
header, DD blocks, and data elements appear in an HDF file in the following order:

• File header
• First DD block
• Data elements
• Additional DD blocks and data elements

Stream Layer

HDF depends on a stream layer that provides direct access capabilities. The tagged structure in the
structure layer requires efficient seeking to specific locations in a single HDF file. HDF files may
be stored or transmitted on sequential media, but they must be moved to direct access media before
they are accessed.

B. Planetary Data System

The PDS acquires, archives, and distributes much of the data that NASA collects on bodies in this
solar system other than Earth, including planets, comets, and asteroids. When the prototype of the
PDS began in 1983, it inherited substantial amounts of existing planetary science data in many
different formats. It was not practical to reformat all of those data into a standard representation.
therefore, the PDS developed a methodology for describing data in a way that both human users
and computers could identify and understand the content of a data file or stream. This methodology
describes data objects that are set forth in a language called the Object Description Language
(ODL). A label (typically called a PDS label) encoded in ODL is attached to every data file or data
stream that flows into or out of the PDS to identify the objects in the file or stream. Gradually the
PDS evolved a relatively comprehensive set of standard objects and data providers are encouraged,
even required, to submit data in a format that is consistent with the standard objects definitions.
The standard objects are defined through the Planetary Science Data Dictionary (PSDD).

Object Layer

PDS object model is still in development and the description below includes some new facets to the
model that are currently being adopted and formalized through the PSDD.

Primary Objects

The two simplest types of objects, called Element and Bit Element, can hold a single instance of a
primitive data type. The two are similar, but the Bit Element type can handle primitive data that are
not aligned on byte boundaries. There are two general aggregation objects—Array and Collection
that hold element objects. An array is homogeneous—all elements must have the same underlying
primitive data type—while the collection can be heterogeneous, which makes it analogous to the
record or structure data type found in many data models.

The PDS also provides several primary data objects that are specialized for space science
applications. These include:

• Histogram
• Image
• Table
• Spectrum

PDS does not use the inheritance mechanism to define subtypes of these objects. Instead, each of
these object classes provides all the attributes needed to describe nearly all instances of the object.
For example, all images are objects of type Image. Figure 7 describes the image object.

Three aspects of the PDS object model, as illustrated above for images, deserve elaboration. First,
there are only a few PDS objects that have formal subtypes. Specifically, there are several
important subtypes of the Table object, including a Palette object to hold color table information for
image display and a Series object to hold time series (or similarly organized) data.

Second, no currently no formal operations defined for images or any other type of PDS object
exist. There are several reasons for this omission, including the difficulty in agreeing on what the
standard operations should be and neither the PSDD nor the ODL used for PDS labels currently
have the syntax or semantics necessary to describe operations. A unique problem with defining
standard operations arises when PDS object types like Image are designed to cover a vast extent of
object instances, with no use of subtyping to provide specialization. This means that some PDS
object types are so complex that there is no single piece of software that can account for all the
possible permutations of their optional attributes. For example, no single piece of software can
handle all instances of PDS images.

Third, there are no formal relationships defined for PDS objects, except for the limited use of
supertype/subtype as noted above and a simple relationship called Contains indicates an object
holds other types of objects. The most notable example of the Contains relationship is the Table
object, which contains one or more Column type objects. In general, if two or more instances of
PDS objects are related—for example, an image and its associated histogram together within a
file—this relationship is only implicitly indicated by the objects that are contained within the same
file and described together by the same PDS label.

Auxiliary Objects

The planetary community has developed a standard representation for orbit/attitude and pointing
auxiliary data. This standard is called SPICE, where the letters of the acronym stand for the kinds
of information that are handled: spacecraft, planets, instruments, coordinates, and events. The
Navigation and Ancillary Information Facility (NAIF) at the Jet Propulsion Laboratory (JPL)
provides auxiliary data to projects in SPICE format. The NAIF also maintains the SPICE standard
and provides an extensive Fortran library of operations to support SPICE-encoded data. SPICE

files (called SPICE kermels) are considered to be PDS objects and their attributes are defined
through the PSDD.

Object Type: Image

Description: An image represents a mapping of the intensity of electromagnetic
radiation in two or three spatial dimensions. Digital images consist of a set
of picture elements, or pixels, with the value of each pixel proportional to
the intensity of light measured by the camera system within the area extent
of the pixel.

Supertype: PDS has no formal inheritance mechanism, hence there is no formal
supertype for type Image.

Subtype: There are no formal subtypes since there is no formal inheritance
mechanism. In practice there are numerous subtypes of images, since the
standard image format produced by each of the cameras abroad a planetary
spacecraft can be considered to be a subtype of type Image

Attributes: The following attributes are mandatory and must appear in each
description of an image object instance:
• Lines—number of scan lines in image
• Line_Samples—number of scan lines in image
• Sample_Type—Type of primitive data that makes up a pixel of the

image
• Sample_Bits—The length of a pixel. There are also a large number of

optional attributes which may or may not appear in a description for an
image object instance, depending upon whether or not they are needed
(if omitted, they each have a default value). A representative set of the
optional attributes for Image are given below:

There are also a large number of optional attributes that may or may not
appear in a description for an image object instance, depending on whether
or not they are needed (if omitted, they each have a default value). A
representative set of the optional attributes for Image are given below:
• Bands—The number of spectral bands in an image
• Band_Storage_Type—Method used to interleave spectral bands in a

multi-spectral image
• Encoding_Type—The method used to compress an image, if any
• Line_Prefix_Bytes—The number of bytes at the beginning of a scan

line that contain non-image data (for example, gain information or
timing data)

• Line_Suffix_Bytes—The number of bytes at the end of a scan line that
contain non-image data

Operations: The PDS does not formally define operations upon objects.

Relationships: There are no formal relationships defined for Image objects.

Figure 7. Description of PDS Image Object Type

Another type of PDS auxiliary data is the Gazeteer object, which is a subtype of the Table object
that provides information about geographical features on planets and satellites. For example, it

provides the name of a feature or region, the body on which it is found, and its coordinates on the
body.

Metadata Objects

The PDS defines a set of metadata object classes called Catalog Objects. They are used primarily to
provide a template for data providers who are supplying information to be placed into the PDS
catalog of data holdings. Some catalog objects are also used to augment the standard attributes of
data objects. A prime example is the Map Projection catalog object, which provides a set of
attributes that define a map projection. Frequently the raw images from planetary spacecraft are
processed by mapping their pixels onto a standard map projection grid. When an object of this kind
is created, a Map Projection catalog object is placed within the Image object in a PDS label to
describe the map characteristics of the data. Users can correlate each pixel of the image with its
location on the planet from information from the Map Projection object.

Container Objects

The PDS has several objects that serve to collect other objects. The most important is the File
object, since most PDS data are transferred within files. Since much of the data that the PDS
distributes is on volume-oriented media like CD-ROM, there is also a Volume object to provide
information on the organization of a collection of files.

PDS container objects often have their own metadata. There is a Header object, which defines the
headers that in turn describe the contents of data files. Aside from the standard PDS labels, this
includes the VICAR labels found on many planetary images and the FITS headers found on many
planetary datasets derived from observations with earth-based telescopes.

Structure Layer

The PDS has a fairly ordinary set of primitive scalar types: character strings, integer, and real
numbers, enumeration types. It also uses the CCSDS format dates and times, allowing these to be
considered primitive types as well.

There is no single required representation for primitive types. It is the instantiation of a primitive
type as an Element type object, or as a component of some other kind of object (like a pixel of an
image), that determines its format. Thus primitive types like numeric values can be represented in
nearly any computer's native format. The PDS label that describes a data object provides
information on the encoding of the primitive data types within the object. For example, a PDS label
will identify whether or not the real number values that make up a histogram object are encoded in
VAX format, IEEE format, or another type of format.

There is no separate data definition language for PDS-labelled data, because the PDS labels contain
information needed to understand the structure layer, A PDS label does not as a rule provide a
complete structure layer mapping: it does not rigorously establish the position of every data item in
the object. Users have to rely upon numerous implicit rules to map from the PDS label's
description of objects to the underlying representation of those objects within the structure layer.

Stream Layer

Small amounts of data are sometime provided to users over the NASA Science Internet. Typically
FTP or DECNET file copy is used to transfer files over the network. Larger quantities of data are
typically provided to users on CD-ROM. There are many CD-ROM titles that adhere to PDS
standards. These disks adhere to the ISO-9660 standard. There are currently no specific stream
layer services provided by the PDS to access data files in a way that is transparent of the medium
of transport.

C. Standard Formatted Data Units

The CCSDS Panel 2 has been developing, adapting, and adopting standards to improve
information interchange within and among space agencies. CCSDS standard recommendations
have been developed in support of a methodology called SFDUs. Briefly, this methodology
involves the association of a small label with a collection of data values, forming a labeled value
object (LVO), and the incorporation within the label of a globally unique identifier (i.e., Authority
and Description Identifier, or ADID) of a description of the data values. This description may be a
CCSDS Panel 2 standard and thus be found in a formal CCSDS recommendation document, or it
may be defined by a user and be found at a Control Authority Office (CAO) set up by a
participating agency conforming to the CCSDS standard titled "Control Authority Procedures."
The primary function of a CAO is to register, archive, and disseminate data descriptions in
response to user requests. These descriptions may themselves be composed of several labeled
objects, including a formal (computer interpretable) description of the format of the data values, a
text description of the mission and instrumentation involved in the creation of the data values, and
software that may be used to obtain particular services from the data values. As such, these
description LVOs may also be packaged with the data LVOs to form a self-describing data
package.

Stream Layer

The SFDU standards assume the existence of stream layer services such as those provided by the
volume/directory file system on a CD-ROM, the sequence of files on an ISO/ANSI standard
labeled magnetic tape, and FTP for network file transfer. The provision of a sequential byte (8-bit)
stream is the minimum requirement of the SFDU standards, while the use of named (e.g.,
directory/file names) byte streams permits the construction of sequences of labeled data objects
that cross multiple files on random access media. This functionality is described in the Structure
Layer.

Structure Layer

The standard titled "SFDU Structure and Construction Rules" is the primary CCSDS Panel 2
standard that interfaces with stream layer services. It defines an SFDU 20-byte label to support
three primary functions:

1. Provide mechanisms to determine the end of a sequence of data values (i.e., encapsulate the
data values) associated with the label

2. Provide a code which gives a general classification (e.g., data, data description package,
supplementary data) to the encapsulated data values

3. Provide a globally unique identifier of a description (e.g., data description package) of the
encapsulated data values. It also defines a number of standard descriptions and assigns
globally unique 8-character standard identifiers (e.g., "CCSD0001") to them.

Application of this standard to the stream layer converts the byte stream view into a view of a
sequence of hierarchically organized labeled value objects. This sequence may span multiple files
on both sequential and random access media. One or more such sequences may be defined on a
physical volume, or within a single file. There is no explicit provision for crossing multiple
physical volumes with a single sequence, but it is possible if this is supported by the stream layer.
It should be noted that the standard can be applied in such a way that many files are not required to
contain labels. Thus the standard can also be applied to pre-existing data streams and to files
conforming to other standards.

The labeled value objects at the lowest level of the hierarchy have a content that appears as a
sequence of bytes from the stream layer. The structure layer function of interpreting this sequence
of bytes into a sequence of primitive datatypes (e.g., integers, characters, and reals) is
accomplished by interpretation of the Data Description Record (DDR) found within the Data
Description Package (DDP) identified in the label. This linkage of information is illustrated in
Figure 8.

The DDR can be expressed in a number of standard languages that have been documented in
CCSDS standards. Currently these include "ASCII Encoded English (CCSD0002)", "Parameter
Value Language (CCSD0006)", and the draft standard "Enhanced Ada Subset (EAST)." The level
of language-related automated support for access to the labeled value object depends on the
language selected and ranges from presentation (e.g., ASCII/English) of a text description of the
record structure(s) within the value to full parsing of record structures (e.g., EAST). Alternative
support may be obtained from software associated with the particular ADID. This software may be
provided as an additional object within the DDP.

DDPs are archived in a CAO so that any DDPs not present in the data stream may be obtained from
the CAO. DDPs are expected to provide a complete description of the values whose labels contain
their ADID, and in addition to the DDR which supports the structure layer function, they are likely
to include a DED object and other semantics which may be used to support object layer services as
described in the next section.

Object Layer

The SFDU standards provide a very general mechanism for representing and transmitting data
objects. The SFDU standards do not currently provide a fully object-oriented approach: there is no
class hierarchy; nor are methods defined, other than services for insertion and retrieval of data from
containers. But SFDUs can be used to encapsulate data objects complete with their attributes and
methods. SFDUs also provide container objects for combining collections of primary objects with
the auxiliary data and metadata needed to interpret them. Thus the SFDU concept is one of a very
few data interchange mechanisms that are designed to encapsulate and transmit all of the kinds of
information contained in a scientific data system, whether object-oriented or not.

Primary Objects

Unlike the PDS and HDF methodologies described above, there are no specific primary data
objects in the SFDU concept. Instead the SFDU standards provide a general object class called an
Application Data Object (ADO). (Each SFDU object class has a one-letter identifier and an ADO is
also called an I class object. As described in the structure layer discussion, the ADID in the label
points to a DDP that fully describes the LVO. The Data Entity Dictionary (DED) with the DDP
gives all the attribute names for the LVO type. In the future the DED will also contain relationship
information about the LVO type. The DED is further described later in this section. For example, a
scientist can use the ADID of an ADO to determine whether the data in the SFDU is an image,
map, spectrum, or whatever, and to tell whether the object is the FITS format, PDS format, or
some other format.

Auxiliary Objects

Since the SFDU standards have been developed with scientific applications in mind, there is a
specific class of SFDU called the Supplementary Data Object (SDO) (or S class) that is used to
contain auxiliary data. For example, if a spectrum is transferred in an ADO the calibration
information for the spectrum can be placed into a SDO and the S class supplemental SFDU can
then be transferred with the I class SFDU that holds the spectrum. As with ADOs a SDO may

contain virtually any kind of data in any format desired, and the ADID for the SDO provides the
key to determining the content and format of the object.

Label Value Object (LVO) Typical Data Description Package
(DDP)

(ADID=Authority and Description
Identifier)

(Includes ADID and
Class Identifiers)

Data Object Consisting
of Sequence of Bytes, Record(s),

 or File(s)

ADID Identifies
a Description

Describes Value

ADID Name
(Name of This
Description)

Data Description Record (DDR)
(Description of Format Used for All

Values Whose Labels Carry the ADID
Name of This Description)

Data Enity Dictionary (DED)
(Further Description of the Data

Elements and Their Collection as
Identified in the DDR)

Further Description Objects

Label

Value

Figure 8. View of SFDU Label Value Object and Its Description

Metadata Objects

An important aspect of the SFDU concept is the ability to encapsulate metadata as well as data.
There are three types of metadata objects defined by the SFDU standards:

• DDO (or D class)—These objects are used to hold the data descriptions that map an SFDU
object—for example, an ADO—into the structure layer. The definition is given in a DDL.
A DDO provides the mapping for a specific instance of an SFDU object. For example, a
DDO may provide the data definition for a specific data table. Other data tables may have
very different representations and hence would have their own DDO to describe them.

• DED Objects (or E class)—These objects are used to hold descriptions from a DED. The
descriptions define types of objects rather than specific object instances. They can also
define the terms used in object type definitions. For example, if an object has an attribute

called Length, a DED object can specify the minimum and maximum values allowed for
Length. The CCSDS is currently completing work on a standard representation for the
information within DED objects. This standard representation uses the Parameter Value
Language (PVL) to encode the DED information.

• Catalog Attribute Object (CAO) (or K class)—Data systems often maintain a catalog—a
database that describes the data held within the system. The CAO can be used to transfer
information to and from a catalog or a similar database. When a data system transfers
applications data to a user it will often provide the pertinent catalog information or other
attributes for the transferred data objects. The CAO supports this by holding the attributes
of a set of ADO wrapped within a container SFDU. As with other types of SFDUs, the
form and content of a CAO are not constrained by the SFDU standards. The information
might be given in tabular format, where the columns are the attributes of the objects that are
being described and each row of the table contains all the attributes for one data object.
Alternatively, catalog attribute information can be given using PVL or a similar
keyword/value notation, where there is a keyword/value pair for each attribute of each
object.

Container Objects

The SFDU methodology provides three types of container objects:

• Exchange Data Units (or Z class)—These objects are the most general encapsulation
mechanism for SFDUs. An Exchange Data Unit (EDU) can hold essentially any
combination of the SFDU objects described in this section, including other EDUs.

• Applications Data Units (or U class)—These container objects can be used to aggregate a
set of related ADOs and SDOs. An Applications Data Unit (ADU) may include a CAO that
describes the other objects in the container. An ADU can also hold other ADUs.

• Description Data Units (or F class)—These container objects can be used to aggregate
DDO, DED Objects, and any other metadata objects.

VI. Relationships With Other Reference Models

This section provides a comparison of the IIRM and two other models: the IEEE
mass storage system reference model and the familiar OSI reference model for communications.

A. IEEE Mass Storage System Reference Model

Information on the Mass Storage System (MSS) Reference Model (RM) was obtained from the
paper "Mass Storage System Reference Model: Version 4", which was published in the
proceedings of the Goddard Conference on Mass Storage Systems and Technologies, Volume 1,
1992.

The MSS RM establishes a client server environment to provide access to a (potentially) distributed
system that accepts and returns named Bitfiles. This storage model addresses data interchange over
time (i.e., storage), but not over space (i.e., an instance of a MSS is not moved to a new location).
In contrast, the IIRM addresses data interchange over both time and space. Since data moved over
time and space may end up stored in a MSS, it is useful to perform a mapping between the IIRM
and the MSS RM.

The MSS RM named Bitfiles appear to be virtually identical to the named bit streams that the IIRM
Stream Layer provides to the Structure Layer. The one exception is that the MSS RM Bitfiles also

have a set of attributes such as file creation date, file owner, etc. Such attributes have not been
called out explicitly in the IIRM, although they must exist and be accessible to the Structure and
Object Layers. In other words, the entire MSS RM addresses functionality covered in the IIRM
Stream Layer.

B. ISO Open Systems Interconnect Reference Model

The ISO OSI RM addresses the interchange of information over time and space using electronic
networks. In contrast, the IIRM applies to both networks and physical media as interchange
mechanisms.

The OSI model is a seven-layer model, which makes use of the information hiding principle of
layers. The functionality of layers one through five (Physical through Session Layers) is to
establish a connection between two communicating nodes and effect the transfer of data bits
between them. This is similar to the functionality of the IIRM Stream Layer, although the name
capability associated with this bit stream as output from the Session Layer appears to depend on the
particular protocol standards defined for this layer.

The sixth layer of the OSI model, called the Presentation Layer, is intended to convert a bit stream
into recognizable data types. While it is hard to determine from the OSI model itself the extent of
this functionality, a clearer picture emerges from an examination of the ASN.1 protocol defined for
this layer. For this layer, the functionality is similar to the IIRM Structure Layer, which includes
the identification of common data types, and their aggregation into named structures.

The seventh, and top, layer of the OSI model, called the Application Layer, is intended to provide
user applications with a number of common services. The types of services to be provided, as
shown by some of the protocols defined for this layer, include electronic mail, a directory service,
and a file transfer service. There is considerable parallel with the IIRM Object Layer, as these
layers are intended to provide user applications with a service view of the underlying data
structures. Differences include the object orientation of this layer in the IIRM (although an object
view of the Application Layer should be possible) and the IIRM focus on understanding scientific
data by focusing on identifying objects of scientific interest. The fact that the OSI model addresses
network functionality leads to identifying Application Layer services for what are highly common
network service needs (e.g., electronic mail). The types of objects (and their services) being
addressed by the IIRM Object Layer could, in principle through standardization, enter an expanded
OSI Application Layer.

The OSI Application Layer file transfer service, differs from the IIRM file transfers that are
handled within the Stream Layer. This is not a contradiction to the mapping between the models
just described. The functionality requested from a file system in the IIRM is to provide named bit
streams. The functionality provided by an FTAM file transfer in the OSI Application Layer
includes the recognition of common data types. The IIRM views the recognition of data types, and
the provision of services from them, are more usefully obtained from an object view, not from a
file view. Mechanisms that take this object view could use an FTAM service, in principle, in either
of two ways: 1) by not using the capability of ASN.1 to describe the data types, and instead
describing the file content as a bit string, thereby reducing FTAM to simply providing named bit
streams, or 2) by using FTAM to include the functionality of the IIRM Structure Layer, and then
providing an object view of the FTAM file content. These variations in mapping reflect options on
the level of services requested, and the ways they may be combined.

VII. Summary And Future Plans

The IIRM provides a basis for comparing data systems and data interchange methodologies at three
levels: as represented by a stream of bits (the stream layer); as a stream of primitive elements (the

structure layer); and as a collection of objects. By applying this model similarities and differences
can be called out in the systems that are used for scientific data interchange and data analysis. The
object layer of the model is unique as it accounts for primary scientific data like images and spectra
that require auxiliary data for interpretation, metadata for description, and containers for
encapsulation. The IIRM allows the user to describe how all these elements fit together for a
specific data system or application.

In the future the IIRM will be refined and the model applied to data interchange systems other than
the three that were analyzed in this paper. This analysis should permit data system designers and
implementers to improve the compatibility and uniformity of information interchange where
practical. This may, for example, make it possible for a scientist to compare spectra of the Earth's
atmosphere with those from other planets, even though the spectra may be retrieved from different
data systems in quite different formats. Capabilities like these will be especially important if we
want to reduce the burden on scientists from dealing with the form rather than the content of
scientific data.

